Think Like Git

Eli Sander
Lead Data Scientist, Tempus Labs
PyData Global 2021



Times Git has ruined my day

e The timel spent hours on a failed rebase
e Thetime |l pushed so much data to Bitbucket, they locked my
account

e T[he many times | just deleted the whole thing and started
over



p

It doesn't have to be this way.

If you understand git, you can debug it!



maaicschoolbus.fandom.com



Agenda

1. Design our own version control system
2. Learn how Git works
3. Solve all of our Git problems



Version Control
From Scratch



Problem 1: | need code checkpoints

e Save a new copy of the code every time
o Stash itin a "Version Control" folder that the user doesn't
see
e How do we name the checkpoints?
o Let's number them. It's like a built-in time record



Commits & Checkout

1 \ test.py
vc commit
vc checkout 1
VC
test.py'
2

another_test.py




Problem 1.5: I'm out of disk space

1.zip \test.py
VC
test.py'
2.zip
another_test.py
i




Problem 2: | want to experiment

e Running multiple "experiments" at once means multiple
"branches"

e Need some kind of tree structure

e Store this in its own file



tree.txt




Lree.tXxt >
4

1>>2 .

2>>3

2>>4 2

3>>5

4>>6




Problem 2.5: Staying organized-

main
TLree.txt

6 dev
main: 1>>2>>4>>6 2
dev: 2>>3>>5 4

I I . 1




Problem 3: | want to combine code
from different branches

e How do we "merge"?
o A merge is just another commit
o |dentify and resolve conflicts
m Compare files via SHA1 hash
e |[f the hashes match, so do the files
m User needs to resolve files with same name but
different hashes
e Merges are directional. Merging A into B creates a different
commit history than B into A.



TLree.txt

main: 1>>2>>4>>6>>7
dev: 2>>3>>5




Inside Git



Confession tfime




Git does what we did. It stores
every file every time you commit.



Every committed version of every
file is stored in the .git folder.

Every file.

In its entirety.



Problem 1: checkpointing

e Compress & hash every file in the repo

e Store the folder structure in a bunch of tree objects
o Compress & hash the trees

e Point to the tree and parent in the commit, along with the
user's info and message
o Compress & hash the commit



Where does it all live?

e All objects (files, commits, trees) live in .git/objects

e FEvery object is named after its hash, so that no objects are
duplicated

e Hash collisions are basically impossible.



tree d9f6ad74a2ab622b3a6f7b7b782ddd7e09a2291b
parent fde3b0478b64a5888a985389%abaecta3245956ec
author EL1 Sander <eli.sander@tempus.com> 1634068706 -0500

committer EL1 Sander <eli.sander@tempus.com> 1634068706 -0500

test for pydata talk



100644
100644
100644
100644
100644
040000
040000

040000
040000
040000
100644
100644
100644
040000

ebff5952c107c17142adef4933ef2628f3ac33cl
761ce787301392904b97d57927121c94dbfb1039
40e6030143cb33efbc9acc8b42411ba8b@98d015
b7b13d20c251c33a017e337d476dcb8d19f39e08
7dbceac509f04d70cabbab2579290f 383480527
007f736ccdab321d23503dbe2d9120720d180907
fb8ff46fc3acb7aboc784b7eldf3b2d62fbe7a43
eae4d585905b8ed6983477b4ea949897b3d6823e
901194398 cdPe769ecad2aaf82fbc38bebeeS554f
Oba27246b8b823ebf3176fece69533985732d54b
2¢c7tc34171407ed88064d812ce934a0529db2078
52¢33dff04cfdl128fe29605d6518363c659bcefb
3fb1c327d3ea2664d5384fdd451b45e1e9c609c3
a340201f377de9b46c3924d25eac6@d16c3355224

.gitignore
CNAME
LICENSE
Research.md
_config.yml
_data
_includes
_layouts
_posts
_sass
about.html
about.md
archive.html
blog




e | etusers create named branches
e T[rack the "head" of each branch
e Thereis no "canonical" branch, just naming conventions

(base) \(*oN)/ elizabeth.sander:~/repos/elsander.github.io/.git/refs/heads (test-dev)$ 1s

&

master test-dev

(base) \("or)/ elizabeth.sander:~/repos/elsander.github.io/.git/refs/heads (test-dev)$ cat master
788c055179e148dc95e1036bbced3476260edd9f




Problem 3: merges

e Compare everything in the two trees
o Accept any new files from either tree
o For files with the same name, accept if hashes match
o Otherwise, dive into the file to resolve



Problem 3: merges

e Compare everything in the two files
o Find most recent common ancestor of the file
o Accept any unique changes from either file
o Otherwise, raise a "merge conflict" for the user to solve



Git in Practice



your local
version
exists
until
commit

Local
changes
don't
affect your
git history

Nothing in
your local
version
exists
until
commit

:



The "working copy”

e Gitignores anything you haven't staged or committed
e |f you checkout a different commit, it won't touch local
changes
o Uncommitted changes follow you from branch to branch
e |f you checkout a commit that conflicts with your working
copy, Git won't even try to resolve



Take-Homes

e Alwaysrungit status before you commit/checkout
e Commit branch-specific changes before switching branches



Fetch & remotes

There is no cloud

it's just someone else's computer



Fetch & remotes

There IS NO Remote
it's jJust someone else's -git folder

Sticker Mule



Fetch & remotes

e git fetch is functionally identical to your coworker
emailing you their .git folder

e Setting a remote is just more convenient than email!

e Remote names like upstream make it seem fancier than it is



GitHub

GitHub is just any other working copy. At its core is a (really good!)
Ul on top of the git CLI.

Some added conveniences:

Lets you set a "default" branch

Editing from GitHub lets you treat it like a real working copy
Better visibility at the user level

Concepts of org level, permissioning, etc.



Final Thoughts



Final Thoughts

e Gitis a complicated CLI on top of a simple tool
e \When you hit an error, look at it from git's perspective
o Whatis in .git?
o Whatis in your working copy?
o Whatis in the remote?
e A couple hours trying to build something like git will teach you
a lot about how/why it works



Resources

e Gitls Simpler Than You Think
e Gitlnternals (a bit in the weeds, but useful reference)
e The Recurse Center



https://nfarina.com/post/9868516270/git-is-simpler
https://git-scm.com/book/en/v2/Git-Internals-Git-Objects
https://www.recurse.com/

THANKS

Any questions?

[f% eli@elisander.com
@ www.tempus.com

www.elisander.com

CREDITS: This presentation template was created by Slidesgo,
including icons by Flaticon, and infographics & images by Freepik.


http://bit.ly/2Tynxth
http://bit.ly/2TyoMsr
http://bit.ly/2TtBDfr

Appendix



(base) \(MoA)/ elizabeth.sander:~/repos/elsander
(base) \(7oA)/ elizabeth.sander:~/repos/elsander
(base) \(7oA)/ elizabeth.sander:~/repos/elsander
[master 788c@55] test for pydata talk

1 file changed, 1 insertion(+)

create mode 100644 test.txt

(base) \(MoA)/ elizabeth.sander:~/repos/elsander
(base) \(MoA)/ elizabeth.sander:~/repos/elsander

io (master)$ echo "test" >> test.txt
io (master)$ git add test.txt
io (master)$ git cm "test for pydata talk"

i0 (master)$ cd .git/objects/
i0/.git/objects (master)$ 1s

78 9 d9 info pack



(base) \(NoA)/ elizabeth.sander:~/repos/elsander.github.io/.git/objects (master)$ git log
commit 788c055179e148dc95e1036bbced3476260edd9f (HEAD -> master)

Author: Eli Sander <eli.sander@tempus.com>

Date: Tue Oct 12 14:58:26 2021 -0500

test for pydata talk




(base) \("0oA)/ elizabeth.sander:~/repos/elsander.github.io/.git/objects (master)$ git cat-file -p 788c055179e148dc9
5e1036b6ced3476260edd9f

tree d9f6ad74a2ab622b3a6f7b7b782ddd7e@9a2291b

parent fde3b0478b64a5888a985389a6aecfa3245956ec

author E11i Sander <eli.sander@tempus.com> 1634068706 -0500
committer ELli Sander <eli.sander@tempus.com> 1634068706 -0500

test for pydata talk



(base) \("or)/ elizabeth.sander:~/repos/elsander.github.io/.git/objects (master)$ git cat-file -p d9f6ad74a2ab622b3
abf7b7b782ddd7e@9a2291b

100644
100644
100644
100044
1006044
040000
040000
040000
040000
040000
100644
100644
100044
040000
100644
040000
100644
040000

blob
blob
blob
blob
blob
tree
tree
tree
tree
tree
blob
blob
blob
tree
blob
tree
blob
tree

ebff5952c107c17142adef4933ef2628f3ac33cl
761ce787301392904b97d57927121c94dbfb1039
40e6030143cb33efbc9acc8b42411ba8b0@98d015
b7b13d20c251¢c33a017e337d476dcb8d19139e08
7dbceac5091f04d70cabbab2579290f 383480527
007f736ccdab321d23503dbe2d9f20720d180907
fb8ff46fc3acb7ab6c784b7eldf3b2d62fbe7a43
eae4d585905b8ed6983477b4ea949897b3d6823e
901194398cde769ecad2aaf82fbc38bebee554f
0ba27246b8b823ebf3176fece69533985732d54b
2¢c7fc34171407ed88064d812ce934a0529db2078
52¢33dff04cfd128fe29605d6518363¢c659bcefb
3fb1c327d3ea2664d5384fdd451b45e1e9c609c3
a340201f377de9b46c3924d25eac60d16c3355224
41db46b927155336d15fa8d3f1a7001447abed50
99f3a745de62851b092be825d624bd85327885f4
06628bd842af95a71423155dd95510941d3a78dc
14032aabd85b43a058cfc7025dd4fa9dd325ea97

.gitignore
CNAME
LICENSE
Research.md
_config.yml
_data
_includes
_layouts
_posts

_sass
about.html
about .md
archive.html
blog
category.html
CSS

feed.xml
fonts



(base) \(*oN)/ elizabeth.sander:~/repos/elsander.github.io/.git/objects (master)$ git cat-file -p 9daeafb9864cf4305

5ae93beb@afdoc7dl44bfa4
test




Summary of how Git stores data

e Commits point to the parent commit, and a "tree" containing
all files/folders in the repo at time of commit

e All objects (files, commits, trees) are stored in .git/objects in
your repo

e All objects are compressed, hashed, and named after their
hashes

e T[he mostrecent commit hash for each branch is listed in
.git/refs/heads

That's it!



