
Think Like Git
Eli Sander

Lead Data Scientist, Tempus Labs
PyData Global 2021



● The time I spent hours on a failed rebase
● The time I pushed so much data to Bitbucket, they locked my 

account
● The many times I just deleted the whole thing and started 

over

Times Git has ruined my day



It doesn't have to be this way.

If you understand git, you can debug it!



magicschoolbus.fandom.com



1. Design our own version control system
2. Learn how Git works
3. Solve all of our Git problems

Agenda



Version Control 
From Scratch

01



● Save a new copy of the code every time
○ Stash it in a "Version Control" folder that the user doesn't 

see
● How do we name the checkpoints?

○ Let's number them. It's like a built-in time record

Problem 1: I need code checkpoints



Commits & Checkout

VC

1

2

test.py

test.py'

another_test.py

vc commit
vc checkout 1



Problem 1.5: I'm out of disk space

VC

1.zip

2.zip

test.py

test.py'

another_test.py



● Running multiple "experiments" at once means multiple 
"branches"

● Need some kind of tree structure
● Store this in its own file

Problem 2: I want to experiment



1

6

5

4

3

2

VC

1.zip

6.zip

.

.

.

tree.txt



1

6

5

4

3

2

tree.txt

1>>2
2>>3
2>>4
3>>5
4>>6



1

6

5

4

3

2

tree.txt

main: 1>>2>>4>>6
dev: 2>>3>>5

main
dev

Problem 2.5: Staying organized



● How do we "merge"?
○ A merge is just another commit
○ Identify and resolve conflicts

■ Compare files via SHA1 hash
● If the hashes match, so do the files

■ User needs to resolve files with same name but 
different hashes

● Merges are directional. Merging A into B creates a different 
commit history than B into A.

Problem 3: I want to combine code 
from different branches



1

6

5

4

3

2

tree.txt

main: 1>>2>>4>>6>>7
dev: 2>>3>>5

main

dev

7



Inside Git

02



Confession time

celbase.com



Git does what we did. It stores 
every file every time you commit.



Every committed version of every 
file is stored in the .git folder.

Every file.

In its entirety.



● Compress & hash every file in the repo
● Store the folder structure in a bunch of tree objects

○ Compress & hash the trees
● Point to the tree and parent in the commit, along with the 

user's info and message
○ Compress & hash the commit

Problem 1: checkpointing



● All objects (files, commits, trees) live in .git/objects
● Every object is named after its hash, so that no objects are 

duplicated
● Hash collisions are basically impossible.

Where does it all live?



What's in a commit?



What's in a tree?



● Let users create named branches
● Track the "head" of each branch
● There is no "canonical" branch, just naming conventions

Problem 2: experimentation

Commit hash for the latest 
commit to master



● Compare everything in the two trees
○ Accept any new files from either tree
○ For files with the same name, accept if hashes match
○ Otherwise, dive into the file to resolve

Problem 3: merges



● Compare everything in the two files
○ Find most recent common ancestor of the file
○ Accept any unique changes from either file
○ Otherwise, raise a "merge conflict" for the user to solve

Problem 3: merges



Git in Practice

03



Git only 
cares 
about the 
.git 
folder

Local 
changes 
don't 
affect your 
git history

Nothing in 
your local 
version 
exists 
until 
commit

Nothing in 
your local 
version 
exists 
until 
commit



● Git ignores anything you haven't staged or committed
● If you checkout a different commit, it won't touch local 

changes
○ Uncommitted changes follow you from branch to branch

● If you checkout a commit that conflicts with your working 
copy, Git won't even try to resolve

The "working copy"



● Always run git status before you commit/checkout
● Commit branch-specific changes before switching branches

Take-Homes



Fetch & remotes

Sticker Mule



Fetch & remotes

Remote
.git folder

Sticker Mule



● git fetch is functionally identical to your coworker 
emailing you their .git folder

● Setting a remote is just more convenient than email!
● Remote names like upstream make it seem fancier than it is

Fetch & remotes



GitHub is just any other working copy. At its core is a (really good!) 
UI on top of the git CLI. 

Some added conveniences:

● Lets you set a "default" branch
● Editing from GitHub lets you treat it like a real working copy
● Better visibility at the user level
● Concepts of org level, permissioning, etc.

GitHub



Final Thoughts

04



● Git is a complicated CLI on top of a simple tool
● When you hit an error, look at it from git's perspective

○ What is in .git?
○ What is in your working copy?
○ What is in the remote?

● A couple hours trying to build something like git will teach you 
a lot about how/why it works

Final Thoughts



● Git Is Simpler Than You Think
● Git Internals (a bit in the weeds, but useful reference)
● The Recurse Center

Resources

https://nfarina.com/post/9868516270/git-is-simpler
https://git-scm.com/book/en/v2/Git-Internals-Git-Objects
https://www.recurse.com/


CREDITS: This presentation template was created by Slidesgo, 
including icons by Flaticon, and infographics & images by Freepik.

Any questions?

THANKS

eli@elisander.com

www.tempus.com

www.elisander.com

http://bit.ly/2Tynxth
http://bit.ly/2TyoMsr
http://bit.ly/2TtBDfr


Appendix

05



Making an example commit



Find the commit hash



Extract the commit object



Extract the "tree" object



Extract test.txt



● Commits point to the parent commit, and a "tree" containing 
all files/folders in the repo at time of commit

● All objects (files, commits, trees) are stored in .git/objects in 
your repo

● All objects are compressed, hashed, and named after their 
hashes

● The most recent commit hash for each branch is listed in 
.git/refs/heads

That's it!

Summary of how Git stores data


