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Sometimes, we can’t find the best solution.

But most of the time, we don’t need to.

Let’s focus on finding an answer that’s good
enough!
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Random Component: Non-deterministic
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WHAT ARE WE OPTIMIZING?

• Often high-dimensional (many inputs, one
output)

• Nearby solutions are of similar quality
• USPS: Minimize distance
• Zebrafish scheduling: Minimize conflicts
• Skyrim looting: Maximize value
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FITNESS FUNCTION

Weaver & Knight 2014



FITNESS FUNCTION
# example inputs
solution = [1, 0, 1, 1, 0]
weights = [1, 2, .5, 4, 1] #fixed
values = [40, 25, 10, 30, 15] #fixed
max_weight = 5

def Fitness(knapsack, weights, values, max_weight):
’’’Calculate the fitness of a knapsack of items.’’’
tot_weight = 0
tot_value = 0
for i, item in enumerate(knapsack):

if item:
tot_weight += weights[i]
tot_value += values[i]

if tot_weight > max_weight:
return 0

else:
return tot_value
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HILL CLIMBER

• Gets stuck in local optima
• Fast!
• Almost no tuning



WHY HEURISTIC?



HILL CLIMBER: INITIALIZATION

import random

def InitializeSol(items):
’’’Random starting knapsack.
items: int, number of items in knapsack.
’’’
knapsack = [0] * items
for i in range(len(knapsack)):

knapsack[i] = random.randint(0,1)
return knapsack



HILL CLIMBER: MUTATION

import random
import copy

def Mutate(knapsack):
’’’Mutate a solution by flipping one bit.’’’
toSwap = random.randint(0, len(knapsack)-1)
if knapsack[toSwap] == 0:

knapsack[toSwap] = 1
else:

knapsack[toSwap] = 0
return knapsack



HILL CLIMBER
import random
from Initialize import InitializeSol
from Fitness import Fitness
from Mutate import Mutate

def HillClimber(steps, weights, values, max_wt, seed):
random.seed(seed) # reproducibility!
best = InitializeSol(len(weights))
bestFit = Fitness(best, weights, values, max_wt)
for i in range(steps):

# take a step
candidate = Mutate(best)
candidateFit = Fitness(candidate, weights,

values, max_wt)
if candidateFit > bestFit:

best = candidate
bestFit = candidateFit

return best



SIMULATED ANNEALING

Hill climbing with a changing temperature

Temperature: probability of accepting a bad step
Hot: accept many bad steps (more random)
Cold: accept fewer bad steps (less random)

Hot Cold

Random Walk Hill Climber
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SIMULATED ANNEALING

• Exploration and exploitation
• Still very fast
• More tuning: cooling schedules, reheating,

and variants



TUNING

It’s hard.

Do a grid search probably.
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EVOLUTIONARY ALGORITHMS
Tournament selection: choose n candidates. The
best becomes a parent.

import random

fits = [65, 2, 0, 30] #list of fitnesses
tournamentsize = 2 # candidates in tournament

def Select(fits, tournamentsize):
’’’Choose an individual to reproduce by having them
randomly compete in a given size tournament.’’’
solutions = len(fits)
competitors = random.sample(range(solutions),

tournamentsize)
compFits = [fits[i] for i in competitors]
# get the index of the best competitor
winner = competitors[compFits.index(max(compFits))]
return winner
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EVOLUTIONARY ALGORITHMS

• Pros:
• Unlikely to get stuck in a single local optimum
• Can explore lots of areas at once
• Biology connection is pretty cool!

• Cons:
• Can lose variation quickly
• More tuning: selection,

mutation/recombination, selection strength,
population size, mutation size

• Slow
• Memory-hungry



ALGORITHM ROUND-UP

• HC: fast but gets stuck easily

• SA: fast-ish, can explore better
• EA: slow, memory-hungry, potentially very

powerful
• Metropolis-coupled MCMC (my personal

favorite): several parallel searches at
different (constant) temperatures, allow
them to swap every so often
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WHAT NEXT?

• papers/books on optimization
• for discrete problems, “combinatorial

optimization”
• other EAs:

• differential evolution
• evolutionary strategies
• genetic programming
• ALPS



WHAT NEXT?

• How have I used these?
• Generating stable food webs
• Identifying similar species (parasites, top

predators) in an ecological system

• code: github.com/esander91/
GoodEnoughAlgs

• blog: lizsander.com

github.com/esander91/GoodEnoughAlgs
github.com/esander91/GoodEnoughAlgs
lizsander.com

