
Evolutionary Algorithms:
Perfecting the Art of “Good

Enough”

Liz Sander

Source: wikipedia.org

Source: fishbase.org

Source: youtube.com

Sometimes, we can’t find the best solution.

But most of the time, we don’t need to.

Let’s focus on finding an answer that’s good
enough!

Sometimes, we can’t find the best solution.

But most of the time, we don’t need to.

Let’s focus on finding an answer that’s good
enough!

Sometimes, we can’t find the best solution.

But most of the time, we don’t need to.

Let’s focus on finding an answer that’s good
enough!

Evolutionary Algorithms

Evolutionary Algorithms

“Heuristic Optimizers with a Random
Component”

“Heuristic Optimizers with a Random
Component”

Heuristic:

Optimizer:

Random Component:

Heuristic: Rule of thumb

Optimizer:

Random Component:

Heuristic: Rule of thumb

Optimizer: Maximizing/minimizing a function
(objective function, cost function, fitness
function)

Random Component:

Heuristic: Rule of thumb

Optimizer: Maximizing/minimizing a function
(objective function, cost function, fitness
function)

Random Component: Non-deterministic

WHY HEURISTIC?

There are methods that guarantee we find the
true optimum...

if you meet the assumptions.

Gradient descent:

• Convex
• Differentiable

WHY HEURISTIC?

There are methods that guarantee we find the
true optimum... if you meet the assumptions.

Gradient descent:

• Convex
• Differentiable

WHY HEURISTIC?

There are methods that guarantee we find the
true optimum... if you meet the assumptions.

Gradient descent:

• Convex
• Differentiable

WHY HEURISTIC?

There are methods that guarantee we find the
true optimum... if you meet the assumptions.

Gradient descent:

• Convex

• Differentiable

WHY HEURISTIC?

There are methods that guarantee we find the
true optimum... if you meet the assumptions.

Gradient descent:

• Convex
• Differentiable

WHY HEURISTIC?

WHY HEURISTIC?

WHAT ARE WE OPTIMIZING?

• Often high-dimensional (many inputs, one
output)

• Nearby solutions are of similar quality
• USPS: Minimize distance
• Zebrafish scheduling: Minimize conflicts
• Skyrim looting: Maximize value

WHAT ARE WE OPTIMIZING?

• Often high-dimensional (many inputs, one
output)

• Nearby solutions are of similar quality

• USPS: Minimize distance
• Zebrafish scheduling: Minimize conflicts
• Skyrim looting: Maximize value

WHAT ARE WE OPTIMIZING?

• Often high-dimensional (many inputs, one
output)

• Nearby solutions are of similar quality
• USPS: Minimize distance

• Zebrafish scheduling: Minimize conflicts
• Skyrim looting: Maximize value

WHAT ARE WE OPTIMIZING?

• Often high-dimensional (many inputs, one
output)

• Nearby solutions are of similar quality
• USPS: Minimize distance
• Zebrafish scheduling: Minimize conflicts

• Skyrim looting: Maximize value

WHAT ARE WE OPTIMIZING?

• Often high-dimensional (many inputs, one
output)

• Nearby solutions are of similar quality
• USPS: Minimize distance
• Zebrafish scheduling: Minimize conflicts
• Skyrim looting: Maximize value

FITNESS FUNCTION

Weaver & Knight 2014

FITNESS FUNCTION
example inputs
solution = [1, 0, 1, 1, 0]
weights = [1, 2, .5, 4, 1] #fixed
values = [40, 25, 10, 30, 15] #fixed
max_weight = 5

def Fitness(knapsack, weights, values, max_weight):
’’’Calculate the fitness of a knapsack of items.’’’
tot_weight = 0
tot_value = 0
for i, item in enumerate(knapsack):

if item:
tot_weight += weights[i]
tot_value += values[i]

if tot_weight > max_weight:
return 0

else:
return tot_value

HILL CLIMBER

HILL CLIMBER

HILL CLIMBER

HILL CLIMBER

X

HILL CLIMBER

HILL CLIMBER

HILL CLIMBER

HILL CLIMBER

• Gets stuck in local optima
• Fast!
• Almost no tuning

WHY HEURISTIC?

HILL CLIMBER: INITIALIZATION

import random

def InitializeSol(items):
’’’Random starting knapsack.
items: int, number of items in knapsack.
’’’
knapsack = [0] * items
for i in range(len(knapsack)):

knapsack[i] = random.randint(0,1)
return knapsack

HILL CLIMBER: MUTATION

import random
import copy

def Mutate(knapsack):
’’’Mutate a solution by flipping one bit.’’’
toSwap = random.randint(0, len(knapsack)-1)
if knapsack[toSwap] == 0:

knapsack[toSwap] = 1
else:

knapsack[toSwap] = 0
return knapsack

HILL CLIMBER
import random
from Initialize import InitializeSol
from Fitness import Fitness
from Mutate import Mutate

def HillClimber(steps, weights, values, max_wt, seed):
random.seed(seed) # reproducibility!
best = InitializeSol(len(weights))
bestFit = Fitness(best, weights, values, max_wt)
for i in range(steps):

take a step
candidate = Mutate(best)
candidateFit = Fitness(candidate, weights,

values, max_wt)
if candidateFit > bestFit:

best = candidate
bestFit = candidateFit

return best

SIMULATED ANNEALING

Hill climbing with a changing temperature

Temperature: probability of accepting a bad step
Hot: accept many bad steps (more random)
Cold: accept fewer bad steps (less random)

Hot Cold

Random Walk Hill Climber

SIMULATED ANNEALING

Hill climbing with a changing temperature

Temperature: probability of accepting a bad step
Hot: accept many bad steps (more random)
Cold: accept fewer bad steps (less random)

Hot Cold

Random Walk Hill Climber

SIMULATED ANNEALING

Hill climbing with a changing temperature

Temperature: probability of accepting a bad step
Hot: accept many bad steps (more random)
Cold: accept fewer bad steps (less random)

Hot Cold

Random Walk Hill Climber

SIMULATED ANNEALING

SIMULATED ANNEALING

SIMULATED ANNEALING

SIMULATED ANNEALING

• Exploration and exploitation
• Still very fast
• More tuning: cooling schedules, reheating,

and variants

TUNING

It’s hard.

Do a grid search probably.

TUNING

It’s hard.

Do a grid search probably.

TUNING

It’s hard.

Do a grid search probably.

EVOLUTIONARY ALGORITHMS

Population

EVOLUTIONARY ALGORITHMS

1.Selection

EVOLUTIONARY ALGORITHMS
Tournament selection: choose n candidates. The
best becomes a parent.

import random

fits = [65, 2, 0, 30] #list of fitnesses
tournamentsize = 2 # candidates in tournament

def Select(fits, tournamentsize):
’’’Choose an individual to reproduce by having them
randomly compete in a given size tournament.’’’
solutions = len(fits)
competitors = random.sample(range(solutions),

tournamentsize)
compFits = [fits[i] for i in competitors]
get the index of the best competitor
winner = competitors[compFits.index(max(compFits))]
return winner

EVOLUTIONARY ALGORITHMS

1.Selection

2.Mutation/Recombination

EVOLUTIONARY ALGORITHMS

1.Selection

2.Mutation/Recombination

3.Repopulation

EVOLUTIONARY ALGORITHMS

1.Selection

2.Mutation/Recombination

3.Repopulation

EVOLUTIONARY ALGORITHMS

• Pros:
• Unlikely to get stuck in a single local optimum
• Can explore lots of areas at once
• Biology connection is pretty cool!

• Cons:
• Can lose variation quickly
• More tuning: selection,

mutation/recombination, selection strength,
population size, mutation size

• Slow
• Memory-hungry

ALGORITHM ROUND-UP

• HC: fast but gets stuck easily

• SA: fast-ish, can explore better
• EA: slow, memory-hungry, potentially very

powerful
• Metropolis-coupled MCMC (my personal

favorite): several parallel searches at
different (constant) temperatures, allow
them to swap every so often

ALGORITHM ROUND-UP

• HC: fast but gets stuck easily
• SA: fast-ish, can explore better

• EA: slow, memory-hungry, potentially very
powerful

• Metropolis-coupled MCMC (my personal
favorite): several parallel searches at
different (constant) temperatures, allow
them to swap every so often

ALGORITHM ROUND-UP

• HC: fast but gets stuck easily
• SA: fast-ish, can explore better
• EA: slow, memory-hungry, potentially very

powerful

• Metropolis-coupled MCMC (my personal
favorite): several parallel searches at
different (constant) temperatures, allow
them to swap every so often

ALGORITHM ROUND-UP

• HC: fast but gets stuck easily
• SA: fast-ish, can explore better
• EA: slow, memory-hungry, potentially very

powerful
• Metropolis-coupled MCMC (my personal

favorite): several parallel searches at
different (constant) temperatures, allow
them to swap every so often

WHAT NEXT?

• papers/books on optimization
• for discrete problems, “combinatorial

optimization”
• other EAs:

• differential evolution
• evolutionary strategies
• genetic programming
• ALPS

WHAT NEXT?

• How have I used these?
• Generating stable food webs
• Identifying similar species (parasites, top

predators) in an ecological system

• code: github.com/esander91/
GoodEnoughAlgs

• blog: lizsander.com

github.com/esander91/GoodEnoughAlgs
github.com/esander91/GoodEnoughAlgs
lizsander.com

