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Drew Conway’s Data Science Venn Diagram
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Drew Conway’s Data Science Venn Diagram

Collaboration?
Prioritization?

Project planning?Working efficiently?



Technical skills help you build a model. 
Business skills ensure it gets used.
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BUSINESS SKILLS FOR DATA SCIENTISTS

Project planning: Solve the right problem
Prioritization: Estimate impact upfront
Working Efficiently: Find the Minimum Viable Method
Collaboration: Be pseudo-agile
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Project Planning
Solve the right problem
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1



“
If I had asked people what they 

wanted, they would have said faster 
horses.
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Henry Ford, maybe?



No one understands your model.

88

BAD NEWS



When people ask for solutions, it is their best guess based on 
limited knowledge.
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BAD NEWS 2



DON’T BUILD A MODEL, SOLVE A PROBLEM

◉ Be curious about your user
◉ Learn about the big picture
◉ Think about the problem without the current solution

1010



CASE STUDY: SEGMENTATION

◉ Segmentation app for a client
◉ hierarchical model
◉ Provided diagnostics and clusters

◉ Client felt that certain features were underweighted and 
wanted flexibility to upweight them

◉ Worked through the math and found that this would have 
little impact on the clusters
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CASE STUDY: SEGMENTATION

So we talked to the users:
◉ How do you use the app?
◉ How do you decide if a cluster is good or bad?
◉ How do you decide if a feature is “underweighted”?

It turned out that the client used entirely different diagnostics 
outside of the app! We were solving the wrong problem.
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CASE STUDY: SEGMENTATION

We rebuilt the app, using a supervised model that optimized for 
the client’s definition of a good cluster.

Positive response from the client

No requests for methodological changes since release
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Prioritization
Estimate Impact Upfront
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WHY ESTIMATE IMPACT?

Clarify your priorities

Spend your time well

Explain your choices to stakeholders

Estimating impact requires context. It should be a conversation 
that includes data scientists, product managers, and 

stakeholders.
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STRATEGY 1: WRITE A PITCH

Problem: Bad survey takers cost money and make estimates worse.
Solution: Prototype model based on attention checks in the survey.
Value: $X saved in survey sample, evidence of bias reduction
Effort (2, 6, or 20 weeks?): M (6 weeks)
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STRATEGY 2: STACK RANK

1. Gather a backlog
2. Estimate effort
3. Rate 1-1000

a. Marginal 
improvement

4. Stack rank
5. Refresh regularly
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Project Effort Priority

Model bad survey takers M 850

Document survey design 
standards

S 700

Update Census data M 600

Research: new survey 
weighting method

L 300



STRATEGY 3: RICE
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Project Reach Impact Certainty Effort Score

Model bad survey takers 9 8 7 6 84

Document survey design 
standards

7 7 9 2 220.5

Update Census data 7 5 10 5 70

Research: new survey 
weighting method

5 6 3 8 11.25



THE LIMITS OF RICE

◉ Favors low effort, high 
certainty work

◉ Transformative ideas in data 
science are always 
speculative

◉ Keep a diverse portfolio of 
projects in your roadmap
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THE OTHER SIDE OF IMPACT

◉ Security
◉ Fairness
◉ Reducing risk of being wrong
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Working Efficiently
Find the Minimum Viable Method
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PUT DOWN THE DEEP LEARNING

It’s tempting to use 
cutting edge methods for 

the most predictive 
model...

...But every project 
comes with opportunity 
cost.
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Ask yourself two questions:



“
Could I solve this with a regression?
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“
Do I need a model at all?
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PERKS OF A SIMPLER APPROACH

◉ Build intuition
◉ What features stand out?
◉ What are the limitations of the regression?

◉ Easier to explain and maintain
◉ “Why did the model do that”?
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Collaboration
Be Pseudo-Agile
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AGILE ENGINEERING

◉ 2 week sprints
◉ Daily standups
◉ Small tickets with clear 

outcomes
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AGILE DATA SCIENCE?

◉ 2 week sprints
◉ Daily standups
◉ Small tickets with clear 

outcomes

◉ Long timelines with 
unclear boundaries 
between steps
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AGILE DATA SCIENCE?

◉ 2 week sprints
◉ Daily standups
◉ Small tickets with clear 

outcomes

◉ Long timelines with unclear 
boundaries between steps

◉ “Yesterday I worked on 
<technical gibberish that 
only one other person 
understands>. Today I’m 
going to keep doing that.”
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AGILE DATA SCIENCE?

◉ 2 week sprints
◉ Daily standups
◉ Small tickets with clear 

outcomes

◉ Long timelines with unclear 
boundaries between steps

◉ “Yesterday I worked on 
<technical gibberish>...”

◉ Large tickets like “validate 
the model”, that don’t 
help the data scientist or 
product manager
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HOW CAN WE...

◉ Plan cross-functional work?
◉ Give PMs visibility into our progress?
◉ Stay focused and avoid rabbit holes?
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THE DATA SCIENCE LIFE CYCLE

Prototype

Validate

Productionize
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THE DATA SCIENCE LIFE CYCLE

Prototype

Validate

Productionize

?

?



STRATEGY 1: TIMEBOXING

◉ Divide research into questions that can be answered in a 
week or two

◉ Each question gets a ticket
◉ Outcome: research artifacts (notebook), decision, more 

tickets
◉ Works well for:

◉ go/no-go decisions
◉ Projects where individual questions take a while to answer
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STRATEGY 2: RESEARCH LOG 

◉ Track completed, in progress, planned work
◉ Frame as hypotheses
◉ Keep technical details elsewhere
◉ Works well when:

◉ The outcome is knowledge
◉ Research questions are small and interconnected
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Closing Thoughts



SUMMARY

◉ Be motivated by problems, not solutions
◉ Find out what work is most impactful, then do it
◉ Build the simplest thing that works
◉ Fit the planning to the project

◉ No planning/visibility is never the best option
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DATA SCIENCE HOT TAKE

The coolest things to build are ones that:
◉ Get built
◉ Get used
◉ Solve the problem
◉ Can be understood
◉ Can be maintained
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RESOURCES

◉ The Effective Engineer - Edmond Lau
◉ Project Management for the Unofficial Project Manager - 

Kagan, Blakemore, Wood
◉ “Put Down the Deep Learning” - Rachel Tatman, PyCon 2019
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https://www.youtube.com/watch?v=qw5dBdTXLEs


THANKS!
Any questions?

lizsander.com
https://www.linkedin.com/in/lizsander/
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